Subspace-based MRS data quantitation of multiplets using prior knowledge.

نویسندگان

  • T Laudadio
  • Y Selén
  • L Vanhamme
  • P Stoica
  • P Van Hecke
  • S Van Huffel
چکیده

Accurate quantitation of Magnetic Resonance Spectroscopy (MRS) signals is an essential step before converting the estimated signal parameters, such as frequencies, damping factors, and amplitudes, into biochemical quantities (concentration, pH). Several subspace-based parameter estimators have been developed for this task, which are efficient and accurate time-domain algorithms. However, they suffer from a serious drawback: they allow only a limited inclusion of prior knowledge which is important for accuracy and resolution. In this paper, a new method is presented: KNOB-SVD and its improved variant KNOB-TLS. KNOB-SVD is a recently proposed method, based on the Singular Value Decomposition (SVD), which allows the use of more prior knowledge about the signal parameters than previously published subspace-based methods. We compare its performance in terms of robustness and accuracy with the performance of three commonly used methods for signal parameter estimation: HTLS, a subspace-based method which does not allow any inclusion of prior knowledge, except for the model order; HTLSPK(Delta fd(eq)), a subspace-based method obtained by incorporating in HTLS the prior information that the frequency differences between doublet components are known and the damping factors are equal; and AMARES, an interactive maximum likelihood method that allows the inclusion of a variety of prior knowledge. Extensive simulation and in vivo studies, using (31)P as well as proton MRS signals, show that the new method outperforms HTLS and HTLSPK(Delta fd(eq)) in robustness, accuracy, and resolution, and that it provides parameter estimates comparable to the AMARES ones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantization of ME-COSI Data With Prior Knowledge Fitting

Introduction: Multi-Echo enhanced Correlated Spectroscopic Imaging (ME-COSI) (1) combines two-dimensional Magnetic Resonance Spectroscopy (2D MRS) with 2D spatial encoding. 2D MRS improves over 1D MRS by allowing detection of “cross peaks” due to J-coupling interactions and resolving such peaks from other co-resonant metabolites (2). While ME-COSI has been introduced and evaluated qualitatively...

متن کامل

A Novel Noise Reduction Method Based on Subspace Division

This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

A Novel Noise Reduction Method Based on Subspace Division

This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...

متن کامل

P63: Automatic Detection of Glioblastoma Multiforme Tumors Using Magnetic Resonance Spectroscopy Data Based on Neural Network

Inflammation has been closely related to various forms of brain tumors. However, there is little knowledge about the role of inflammation in glioma. Grade IV glioma is formerly termed glioblastoma multiform (GBM). GBM is responsible for over 13,000 deaths per year in the America. Magnetic resonance imaging (MRI) is the most commonly used diagnostic method for GBM tumors. Recently, use of the MR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of magnetic resonance

دوره 168 1  شماره 

صفحات  -

تاریخ انتشار 2004